Effectiveness of Anaerobic Technologies in the Treatment of Landfill Leachate

Author:

Ahmad Imran,Abdullah Norhayati,Chelliapan Shreeshivadasan,Yuzir Ali,Koji Iwamoto,Al-Dailami Anas,Arumugham Thilagavathi

Abstract

Improper Solid Waste Management leads to the generation of landfill leachate at the landfills. To reduce the negative impacts of highly toxic and recalcitrant leachate on the environment, several techniques have been used. A lot of research is conducted to find suitable methods for the treatment of landfill leachate such as biological processes, chemical oxidation processes, coagulation, flocculation, chemical precipitation, and membrane procedures. The biological process is still being used widely for the treatment of leachate. The current system of leachate treatment consists of various unit processes which require larger area, energy and cost. In addition, the current aerobic treatment is not able to treat entirely the pollutants which require further treatment of the leachate. Anaerobic wastewater treatment has gained considerable attention among researchers and sanitary engineers primarily due to its economic advantages over conventional aerobic methods. The major advantages of anaerobic wastewater treatment in comparison to aerobic methods are: (a) the lack of aeration, which decreases costs and energy requirements; and (b) simple maintenance and control, which eliminates the need for skilled operators and manufacturers. Several anaerobic processes have been used for leachate treatment such as up-flow anaerobic sludge blanket (UASB) reactor, anaerobic filter, hybrid bed reactor, anaerobic sequencing batch reactor and Anaerobic baffled reactor. The following chapter provides an insight to the solid waste management at the landfills, generation of leachate and details of some of the highly efficient anaerobic treatment systems that are used for the overall treatment of landfill leachate.

Publisher

IntechOpen

Reference81 articles.

1. Bureau , U., US and world population clock. 2018.

2. Atlas, W., Waste management for everyone. Recuperado el, 2018.5.

3. Abuabdou, S.M., W. Ahmad, N.C. Aun, and M.J. Bashir, A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: effectiveness, limitations and future perspectives. Journal of Cleaner Production, 2020. 255: p. 120215.

4. Postacchini, L., F.E. Ciarapica, and M. Bevilacqua, Environmental assessment of a landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. Journal of Cleaner Production, 2018. 183: p. 1021-1033.

5. Sun, H., Y. Peng, and X. Shi, Advanced treatment of landfill leachate using anaerobic–aerobic process: Organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite. Bioresource technology, 2015. 177: p. 337-345.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3