Smart Breeding for Climate Resilient Agriculture

Author:

Singh Bakala Harmeet,Singh Gurjeet,Srivastava Puja

Abstract

Human society is at a turning point of its time as climate change is becoming more and more real and inevitable. From rising temperature, which undermines the food production, to melting glaciers, causing disastrous flooding and erosion, the global repercussions of climate change are unprecedented. Plant breeding has always played a pivotal role in human history by revolutionizing agriculture to feed the ever-growing population. It can rescue humankind from imminent threats to agriculture posed by weather fluctuations, rapidly evolving pests and limiting resources. Unlocking the repository of genetic diversity and extensive utilization of wild germplasm invariably is imperative to every crop improvement program. But recent advancements in genomics, high throughput phenomics, sequencing and breeding methodologies along with state-of-the-art genome-editing tools in integration with artificial intelligence open up new doors for accelerated climate-resilient crop improvement. Therefore, holistic smart breeding approaches can be promising way out to tackle climate change and develop better-adapted crop varieties.

Publisher

IntechOpen

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3