Abstract
Lignocellulosic and algal biomass have been suggested as relatively sustainable alternatives to sugar and starch-based biomass for various fermentation technologies. However, challenges in pretreatment, high production costs and high waste generation remains a drawback to their commercial application. Processing cellulosic and algal biomass using the biorefinery approach has been recommended as an efficient and cost-effective pathway since it involves the recovery of several products from a single biomass using sequential or simultaneous processes. This review explored the developments, prospects and perspectives on the use of this pathway to add more value and increase the techno-economic viability of cellulosic and algal fermentation processes. The composition of lignocellulosic and algal biomass, the conventional ethanol production processes and their related sustainability issues are also discussed in this chapter. Developments in this approach to lignocellulosic and algal biomass has shown that valuable products at high recovery efficiencies can be obtained. Products such as ethanol, xylitol, lipids, organic acids, chitin, hydrogen and various polymers can be recovered from lignocellulosic biomass while ethanol, biogas, biodiesel, hydrocolloids, hydrogen and carotenoids can be recovered from algae. Product recovery efficiencies and biomass utilisation have been so high that zero waste is nearly attainable. These developments indicate that indeed the application of fermentation technologies to cellulosic and algal biomass have tremendous commercial value when used in the integrated biorefinery approach.