Abstract
Flower Symmetry is a key evolutionary innovation in some lineages of angiosperms. The flowers of the primitive angiosperm plants were radially symmetrical actinomorphic. Later bilaterally symmetrical zygomorphic flowers independently evolved in several clades of angiosperms. This transition of trait is associated with an adaptation to specialized methods of pollination. Zygomorphic flowers allow more specific plant insect interaction. So, the transition from radial symmetry to bilateral symmetry facilitates reproductive isolation which in turn might have led to diversification or rapid speciation of some lineages in angiosperms. Phylogenetic analyses in lineages of angiosperms revealed that few clades have shown that there have been reversals, that is, there is transition from bilateral symmetry to radial symmetry. When such studies are correlated with genetic studies, it is revealed that CYC (TCP family) transcription factors are responsible for the transition of this floral trait. Phylogenetic analyses, genetic studies and Evo-Devo analyses can answer important questions such as what other transition in floral symmetry is found in angiosperms? Is there a pattern of floral symmetry transition in different lineages? Do these transitions act as key innovation for the clades in which they have evolved?