Author:
Chaalal Makhlouf,Ydjedd Siham
Abstract
Naturally occurring vitamin E, comprised of four forms each of tocopherols and tocotrienols, are synthesized solely by photosynthetic organisms and function primarily as antioxidants. The structural motifs of the vitamin E family and specifically the chroman moiety, are amenable to various modifications in order to improve their bioactivities towards numerous therapeutic targets. Tocopherols are lipophilic antioxidants and together with tocotrienols belong to the vitamin-E family. These lipid-soluble compounds are potent antioxidants that protect polyunsaturated fatty acids from lipid peroxidation. Biosynthetic pathways of plants producing a diverse array of natural products that are important for plant function, agriculture, and human nutrition. Edible plant-derived products, notably seed oils, are the main sources of vitamin E in the human diet. The biosynthesis of tocopherols takes place mainly in plastids of higher plants from precursors derived from two metabolic pathways: homogentisic acid, an intermediate of degradation of aromatic amino acids, and phytyldiphosphate, which arises from methylerythritol phosphate pathway. Tocopherols and tocotrienols play an important roles in the oxidative stability of vegetable oils and in the nutritional quality of crop plants for human and livestock diets. Here, we review major biosynthetic pathways, including common precursors and competitive pathways of the vitamin E and its derivatives in plants.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献