Two Spectroscopies as Main Source for Investigation of Polymer-Clay Materials

Author:

Morari do Nascimento Gustavo

Abstract

In the recent years the synthesis and characterization of nanomaterials has been one of the most efficacious way to produce new materials with improved or completely new properties. The polymer-clay nanocomposites are one of the most interesting nanomaterials with the possibility to create a myriad of new materials with many applications. Lamellar materials are classified as two-dimensional (2D), because there are formed by platelets piled up in one crystallographic direction, as the graphite and clays. The synthesis of controlled dimensional nanostructures as well as the characterization of the intrinsic and potentially peculiar properties of these nanostructures are central themes in nanoscience. The study of different nanostructures has great potential to test and understand fundamental concepts about the role of particle dimensionality on their physicochemical properties. Among the various materials studied in the literature, undoubtedly, polymer-clay materials, especially conducting polymers with smectite clays, such as montmorillonites (MMT) are of particular note. Our group have paid many efforts in the characterization of nanomaterials by using powerful spectroscopic techniques to study both the guest and host in case of inclusion compounds, nanofibers, carbon allotropes or many phases present in polymer-clay nanocomposites. There are two central questions that it was possible to address in this study: (i) the molecular structure of the polymer is drastically changed inside the interlayer cavity of clay and (ii) by using the appropriate synthetic or heating route is possible to change the molecular structure of the confined polymer. In the follow lines, it is briefly told the main aspects of resonance Raman and X-ray absorption spectroscopies in the study of polymer-clay nanocomposites.

Publisher

IntechOpen

Reference56 articles.

1. The Holy Bible, English Standard Version. ESV® Text Edition: 2016. Copyright © 2001 by Crossway Bibles, a publishing ministry of Good News Publishers

2. Bergaya F, Lagaly G. General introduction: Clays, clay minerals, and clay science. In: Handbook of Clay Science, Bergaya, F. Theng, B. K. G. & Lagaly, G. (Eds.). 1-18 Elsevier, Amsterdam. 2006

3. Hall PL. Clays: their significance, properties, origins and uses. In: A Handbook of Determinative Methods in Clay Mineralogy, Wilson, M.J. (Ed.). 1-25, Blackie, Glasgow. 1987

4. Guggenheim S, Martin RT. Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals 1995;43: 255 and Clay Minerals 1995;30:257

5. Moore DM, Reynolds RC Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edition. Oxford University Press, Oxford, 1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3