Author:
Razib Hossain Md.,Kimura-Sashikawa Miho,Komine Mayumi
Abstract
Skin pigmentation is a specific and complex mechanism that occurs as a result of the quantity and quality of melanin produced, as well as the size, number, composition, mode of transfer, distribution, and degradation of the melanosomes inside keratinocytes and the handling of the melanin product by the keratinocyte consumer. Melanocyte numbers typically remain relatively constant. Melanin synthesis, melanosome maturation, and melanoblast translocation are considered to be responsible for hereditary pigmentary disorders. Keratinocytes play a significant role in regulating the adhesion, proliferation, survival, and morphology of melanocytes. In the epidermis, each melanocyte is surrounded by 30–40 keratinocytes through dendrites and transfers mature melanosomes into the cytoplasm of keratinocytes, which are then digested. Melanocytes are believed to transfer melanosomes to neighboring keratinocytes via exocytosis-endocytosis, microvesicle shedding, phagocytosis, or the fusion of the plasma membrane, protecting skin cells against ultraviolet (UV) damage by creating a physical barrier (cap structure) over the nucleus. An understanding of the factors of melanocytes and keratinocytes that induce pigmentation and the transfer mechanism of melanosomes to keratinocytes and how genetic abnormalities in keratinocytes affect pigmentary skin disorders will help us to elucidate hereditary pigmentary disorders more transparently and provide a conceptual framework for the importance of keratinocytes in the case of pigmentary disorders.