Recognition of Brain Wave Related to the Episode Memory by Deep Learning Methods

Author:

Kuremoto Takashi,Ishikawa Junko,Mabu Shingo,Mitsushima Dai

Abstract

Hippocampus makes an important role of memory in the brain. In this chapter, a study of brain wave recognition using deep learning methods is introduced. The purpose of the study is to match the ripple-firings of the hippocampal activity to the episodic memories. In fact, brain spike signals of rats (300–10 kHz) were recorded and machine learning methods such as Convolutional Neural Networks (CNN), Support Vector Machine (SVM), a deep learning model VGG16, and combination models composed by CNN with SVM and VGG16 with SVM were adopted to be classifiers of the brain wave signals. Four kinds of episodic memories, that is, a male rat contacted with a female/male rat, contacted with a novel object, and an experience of restrain stress, were detected corresponding to the ripple waves of Multiple-Unit Activities (MUAs) of hippocampal CA1 neurons in male rats in the experiments. The experiment results showed the possibility of matching of ripple-like firing patterns of hippocampus to episodic memory activities of rats, and it suggests disorders of memory function may be found by the analysis of brain waves.

Publisher

IntechOpen

Reference24 articles.

1. Blankertz B et al. The BCI Competition 2003: Progress and perspectives in detection and discrimination of EEG Single Trials. IEEE Transaction on Biomedical Engineering. 2004;51(6):1044-1051

2. Colorado State University, Brain-Computer Interfaces Laboratory. Available from: http://www.cs.colostate.edu/eeg/

3. BCI competition II. Available from: http://www.bbci.de/competition/ii/#datasets

4. Chin ZY, Ang KK, Wang C, Guan C, Zhang H. Multi-class filter bank common spatial pattern for four-class motor imagery BCI. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. Vol. 2009. Minneapolis, MN, USA: EMBC; 2009. pp. 571-574

5. Tang Z, Li C, Sun S. Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik. 2017;130:11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3