IoT Device Identification Using Device Fingerprint and Deep Learning

Author:

Baral Prashant,Yang Ning,Weng Ning

Abstract

The foundation of security in IoT devices lies in their identity. However, traditional identification parameters, such as MAC address, IP address, and IMEI, are vulnerable to sniffing and spoofing attacks. To address this issue, this paper proposes a novel approach using device fingerprinting and deep learning for device identification. Device fingerprinting is generated by analyzing inter-arrival time (IAT), round trip time (RTT), or IAT/RTT outliers of packets used for communication in networks. We trained deep learning models, namely convolutional neural network (CNN) and CNN + LSTM (long short-term memory), using device fingerprints generated from TCP, UDP, ICMP packet types, ICMP packet type, and their outliers. Our results show that the CNN model performs better than the CNN + LSTM model. Specifically, the CNN model achieves an accuracy of 0.97 using the IAT device fingerprint of ICMP packet type, and 0.9648 using the IAT outlier device fingerprint of ICMP packet type on a publicly available dataset from the crawdad repository.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passive Identification of WiFi Devices At-Scale: A Data-Driven Approach;2024 IEEE 49th Conference on Local Computer Networks (LCN);2024-10-08

2. DEMO : Passive Identification of WiFi Devices in Real-Time;Proceedings of the ACM SIGCOMM 2024 Conference: Posters and Demos;2024-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3