Author:
Rodriguez-Pascual Fernando
Abstract
Elastin is the extracellular matrix protein providing large arteries, lung parenchyma and skin with the properties of extensibility and elastic recoil. Within these tissues, elastin is found as a polymer formed by tropoelastin monomers assembled and cross-linked. In addition to specific protein regions supporting the covalent cross-links, tropoelastin is featured by the presence of highly repetitive sequences rich in proline and glycine making up the so-called hydrophobic domains. These protein segments promote structural flexibility and disordered protein properties, a fundamental aspect to explain its elastomeric behavior. Unlike other matrix proteins such as collagens or laminins, elastin emerged relatively late in evolution, appearing at the divergence of jawed and jawless fishes, therefore present in all species from sharks to humans, but absent in lampreys and other lower chordates and invertebrates. In spite of an intense interrogation of the key aspects in the evolution of elastin, its origin remains still elusive and an ancestral protein that could give rise to a primordial elastin is not known. In this chapter, I review the main molecular features of tropoelastin and the available knowledge on its evolutionary history as well as establish hypotheses for its origin. Considering the remarkable similarities between the hydrophobic domains of the first recognizable elastin gene from the elasmobranch Callorhinchus milii with certain fibrillin regions from related fish species, I raise the possibility that fibrillins might have provided protein domains to an ancestral elastin that thereafter underwent significant evolutionary changes to give the elastin forms found today.