Next Generation of Transgenic Plants: From Farming to Pharming

Author:

Ayan Alp,Meriç Sinan,Gümüş Tamer,Atak Çimen

Abstract

The number of approaches related to recombinant protein production in plants is increasing rapidly day by day. Plant-based expression offers a safe, cost-effective, scalable, and potentially limitless way to rapidly produce recombinant proteins. Plant systems, which have significant advantages over animal and yeast recombinant protein production systems, are particularly promising for the large-scale production of antibodies and therapeutic proteins. Molecular pharming with transgenic plant systems become prominent among other production systems with its low cost, absence of human or animal pathogen contaminants, and the ability to use post-translational modifications such as glycosylation. The ability to produce recombinant pharmaceutical proteins in plant seeds, plant cells and various plant tissues such as hairy roots and leaves, through the stable transformation of the nuclear genome or transient expression, allows for the establishment of different production strategies. In particular, the rapid production of candidate proteins by transient expression, which eliminates the need for lengthy transformation and regeneration procedures, has made plants an attractive bioreactor for the production of pharmaceutical components. This chapter aimsto exhibit the current plant biotechnology applications and transgenic strategies used for the production of recombinant antibodies, antigens, therapeutic proteins and enzymes, which are used especially in the treatment of various diseases.

Publisher

IntechOpen

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3