Wear Protective Effects of Tribolayer Formation for Copper Based Alloys in Sliding Contacts: Alloy Dependent Sliding Surfaces and Their Effects on Wear and Friction

Author:

Cihak-Bayr Ulrike,Jisa Robin,Franek Friedrich

Abstract

High sliding wear resistance is generally attributed to high hardness and high mechanical strength. Novel near net shape process technologies such as metal injection moulding (MIM) or lost foam casting (LF) lack forming processes that typically increase strength. Consequently, the materials exhibit large-grained microstructures with low defect densities. Commercial copper alloys (CuSn8, CuNi9Sn6, CuSn12Ni2) well known for good sliding properties were produced using MIM and LF and characterised in the current study. Their wear and friction behaviour was compared to conventionally produced variants in a lubricated, reciprocating sliding test against steel. The results showed an equal or superior wear resistance and lower friction levels for large-grained microstructures evolving in MIM and LF. SEM, FIB and EBSD studies revealed a tribolayer on the surface and a tribologically transformed layer (TTL), composed of a nano-crystalline zone or partially rotated grains, and selective hardening of grains. The extent of the TTL was different for alloys that were chemically identical but exhibited different initial microstructures. Innovative production routes investigated here showed no tribological drawbacks, but present the potential to increase lifetime, as nano-crystalline zones may render the sample more prone to wear. We present a hypothesis on the cause for these behaviours.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3