Signal Optimal Smoothing by Means of Spectral Analysis
Reference41 articles.
1. Savitzky A. and Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 1964; 36: 1627–1639. DOI: 10.1021/ac60214a047
2. Daubechies I. Ten Lectures on Wavelets. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA. 1992. p. xix + 357. DOI: 10.1137/1.9781611970104; 10.1137/1.9781611970104#_blank#Opens new window
3. Hodrick R. and Prescott E.C. Postwar U.S. business cycles: an empirical investigation. Journal of Money, Credit and Banking. 1997; 29: 1–16.
4. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.‐C., Tung C.C. and Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society in London. 1998; 454A: 903–993. DOI: 10.1098/rspa.1998.0193
5. Huang N.E., Wu M.-L., Qu W., Long S.R., Shen S.S.P., and Zhang J.E. Applications of Hilbert–Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry. 2003; 19: 245–268. DOI: 10.1002/asmb.506