Automatic Battery Swap System for Home Robots

Author:

Wu Juan1,Qiao Guifang1,Ge Jian1,Sun Hongtao1,Song Guangming1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Battery-Swapping Multi-Agent System for Sustained Operation of Large Planetary Fleets;2024 IEEE Aerospace Conference;2024-03-02

2. Algorithm for Replacing the Battery of a Robotic Tool Using Serving Mobile Robots;2022 International Russian Automation Conference (RusAutoCon);2022-09-04

3. Algorithm for Replacing the Battery of a Robotic Tool Using Servicing Mobile Robots on Inhomogeneous Surfaces;Lecture Notes in Computer Science;2022

4. A Review on Electrical and Mechanical Technologies Used in Spray Painting Robots;Lecture Notes in Mechanical Engineering;2021

5. Combinatorial Problems in Multirobot Battery Exchange Systems;IEEE Transactions on Automation Science and Engineering;2018-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3