Deep Cell-Type Deconvolution from Bulk Gene Expression Data Using DECODE

Author:

Hermush Eran1,Sharan Roded1

Affiliation:

1. School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract

It is becoming clear that bulk gene expression measurements represent an average over very different cells. Elucidating the expression and abundance of each of the encompassed cells is key to disease understanding and precision medicine approaches. A first step in any such deconvolution is the inference of cell type abundances in the given mixture. Numerous approaches to cell-type deconvolution have been proposed, yet very few take advantage of the emerging discipline of deep learning and most approaches are limited to input data regarding the expression profiles of the cell types in question. Here we present DECODE, a deep learning method for the task that is data-driven and does not depend on input expression profiles. DECODE builds on a deep unfolded non-negative matrix factorization technique. It is shown to outperform previous approaches on a range of synthetic and real data sets, producing abundance estimates that are closer to and better correlated with the real values.

Publisher

IntechOpen

Reference19 articles.

1. Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger rna signatures. Genome Biol. 2016;17(1):1–25.

2. Nadel BB, Oliva M, Shou BL, Mitchell K, Ma F, Montoya DJ, Systematic evaluation of transcriptomics-based deconvolution methods and references using thousands of clinical samples. Brief Bioinform. 2021;22(6):bbab265. arXiv:https://academic.oup.com/bib/article-pdf/22/6/bbab265/42242154/bbab265.pdf, doi:10.1093/bib/bbab265.

3. Cobos FA, Alquicira-Hernandez J, Powell JE, Mestdagh P, De Preter K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat Commun. 2020;11(1):1–14.

4. Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun. 2019;10(1):1–9.

5. Patrick E, Taga M, Ergun A, Ng B, Casazza W, Cimpean M, Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. PLOS Comput Biol. 2020;16(8):e1008120.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3