Carbon Nanotube Areas — Printed on Textile and Paper Substrates

Author:

Fischer Thomas1,Wetzold Nora2,Elsner Holg1,Kroll Lothar1,Hübler Arved C.2

Affiliation:

1. Department of Lightweight Structures and Polymer Technology, Chemnitz University of Technology, Germany

2. Institute for Print and Media Technology, Chemnitz University of Technology, Germany

Abstract

Mass printing processes are the key technology to produce mass products to the point of one-disposable. Carbon nanotube (CNT) based structures were prepared by flexographic printing using multi-walled carbon nanotube (MWCNT) dispersions in water. The carbon nanotubes were applied to a textile substrate made of polyester and polyamide microfilaments and to both-side coated paper to produce electrically conductive layers that can be used, for example, as heating elements. Carbon nanotube layers with sheet resistivity ranging from 0.12 to 3.00 kΩ/sq were obtained. The ratio of radiation power PS (determined according to the Stefan-Boltzmann law) of the printed layers to the electrical power spent, represents the efficiency of the system. The samples on textile substrate with a surface temperature of 169°C have an efficiency of 25%, the paper samples with a surface temperature of 93 °C have an efficiency of about 15 %.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3