Monocular Road Detection Using Structured Random Forest

Author:

Xiao Liang1,Dai Bin1,Liu Daxue1,Zhao Dawei1,Wu Tao1

Affiliation:

1. College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan, China

Abstract

Road detection is a key task for autonomous land vehicles. Monocular vision-based road-detection algorithms are mostly based on machine learning approaches and are usually cast as classification problems. However, the pixel-wise classifiers are faced with the ambiguity caused by changes in road appearance, illumination and weather. An effective way to reduce the ambiguity is to model the contextual information with structured learning and prediction. Currently, the widely used structured prediction model in road detection is the Markov random field or conditional random field. However, the random field-based methods require additional complex optimization after pixel-wise classification, making them unsuitable for real-time applications. In this paper, we present a structured random forest-based road-detection algorithm which is capable of modelling the contextual information efficiently. By mapping the structured label space to a discrete label space, the test function of each split node can be trained in a similar way to that of the classical random forests. Structured random forests make use of the contextual information of image patches as well as the structural information of the labels to get more consistent results. Besides this benefit, by predicting a batch of pixels in a single classification, the structured random forest-based road detection can be much more efficient than the conventional pixel-wise random forest. Experimental results tested on the KITTI-ROAD dataset and data collected in typical unstructured environments show that structured random forest-based road detection outperforms the classical pixel-wise random forest both in accuracy and efficiency.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiDAR-Based Automatic Pavement Distress Detection and Management Using Deep Learning and BIM;Journal of Construction Engineering and Management;2024-07

2. Epurate-Net: Efficient Progressive Uncertainty Refinement Analysis for Traffic Environment Urban Road Detection;IEEE Transactions on Intelligent Transportation Systems;2024-07

3. TEDNet: Twin Encoder Decoder Neural Network for 2D Camera and LiDAR Road Detection;Logic Journal of the IGPL;2024-05-10

4. Research on the optimization of local lane segmentation in BEV based on dynamic serpentine convolution;Third International Conference on High Performance Computing and Communication Engineering (HPCCE 2023);2024-02-09

5. Determination of the most Important Factors of Pavement Demolition of Forest Roads in Azar Roud Watershed;journal of watershed management research;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3