A Global Obstacle-Avoidance Map for Anthropomorphic Arms

Author:

Fang Cheng1,Ding Xilun1

Affiliation:

1. Robotics Institute, Department of Mechanical Engineering and Automation, Beihang University, Beijing, China

Abstract

More and more humanoid robots are used in human society, and they face a wide variety of complicated manipulation tasks, which are mainly to be achieved by their anthropomorphic arms. Obstacle avoidance for the anthropomorphic arm must be a fundamental consideration to guarantee the successful implementation of these tasks. Different from traditional methods searching for feasible or optimal collision-free solutions for the anthropomorphic arm, a global obstacle-avoidance map for the whole arm is proposed to indicate the complete set of feasible solutions. In this map, the motion of the arm can be appropriately planned to intuitively control the configuration of the arm in motion. First, the cubic spline function is adopted to interpolate some well-chosen path points to generate a smooth collision-free path for the wrist of the anthropomorphic arm. Second, based on the path function of the wrist, the time and the self-rotation angle of the arm about the “shoulder-wrist” axis are used to parameterize all possible configurations of the arm so that a global two-dimensional map considering the obstacle avoidance can be established. Subsequently, a collision-free self-rotation angle profile of the arm can be well planned. Finally, the joint trajectories of a specific anthropomorphic arm, which correspond to the planned path of the wrist and self-rotation angle profile of the arm, can be solved on the basis of the general kinematic analysis of the anthropomorphic arm, and the specific structure. Several simulations are conducted to verify that the proposed collision-free motion planning method for anthropomorphic arms has some advantages and can be regarded as a convenient and intuitive tool to control the configuration of the anthropomorphic arm in motion, without collision with obstacles in its surroundings.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3