Affiliation:
1. Sejong University, Seoul, Republic of Korea
2. Department of Electrical and Computer Engineering, Florida State University, USA
Abstract
With the rapid development of computers and the increasing, mass use of high-tech mobile devices, vision-based face recognition has advanced significantly. However, it is hard to conclude that the performance of computers surpasses that of humans, as humans have generally exhibited better performance in challenging situations involving occlusion or variations. Motivated by the recognition method of humans who utilize both holistic and local features, we present a computationally efficient hybrid face recognition method that employs dual-stage holistic and local feature-based recognition algorithms. In the first coarse recognition stage, the proposed algorithm utilizes Principal Component Analysis (PCA) to identify a test image. The recognition ends at this stage if the confidence level of the result turns out to be reliable. Otherwise, the algorithm uses this result for filtering out top candidate images with a high degree of similarity, and passes them to the next fine recognition stage where Gabor filters are employed. As is well known, recognizing a face image with Gabor filters is a computationally heavy task. The contribution of our work is in proposing a flexible dual-stage algorithm that enables fast, hybrid face recognition. Experimental tests were performed with the Extended Yale Face Database B to verify the effectiveness and validity of the research, and we obtained better recognition results under illumination variations not only in terms of computation time but also in terms of the recognition rate in comparison to PCA- and Gabor wavelet-based recognition algorithms.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献