Application of Taguchi Method in the Optimization of Swimming Capability for Robotic Fish

Author:

Li Liang1,Lv Jiang2,Chen Wang1,Wang Wei1,Zhang Xing3,Xie Guangming1

Affiliation:

1. Intelligent Control Laboratory, College of Engineering, Peking University, Beijing, P.R. China

2. Department of Electrical Engineering, College of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China

3. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, P.R. China

Abstract

In this paper, we applied the Taguchi method to evaluate the maximum swimming speed of a robotic fish under the limitation of the output of the motor. Four factors were considered in the optimization: the caudal-fin aspect ratio, the caudal fin stiffness, the oscillating frequency and the stiffness of the spring that transmits forces from the actuators to the foil. Because of the power limitations, the parameter's space was irregular. Since the Taguchi method requires a regular parameter space, we divided the parameter space into a regular space and the remaining irregular spaces. Within only 25 trials, the frequency and the spring stiffness were determined as the main factors in the regular space by the orthogonal design. Six more trials were carried out in the remaining irregular space with a higher frequency and spring stiffness. The fastest swimming speed of 870 mm/s, approximately 2.6 BL ( Body Lengths)/ s, was acquired, when the frequency reached 12 Hz and with infinite spring stiffness. This method is efficient for exploring the maximum locomotor capabilities of robotic fish and may also be useful for other robots as no modelling is required.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3