Affiliation:
1. College of IOT Engineering, Hohai University, Changzhou, China
2. College of Energy and Electrical Engineering, Hohai University, Nanjing, China
Abstract
This paper presents an iterative learning control (ILC) strategy to resolve the trajectory tracking problem of wheeled mobile robots (WMRs) based on dynamic model. In the previous study of WMRs’ trajectory tracking, ILC was usually applied to the kinematical model of WMRs with the assumption that desired velocity can be tracked immediately. However, this assumption cannot be realized in the real world at all. The kinematic and dynamic models of WMRs are deduced in this chapter, and a novel combination of D-type ILC algorithm and dynamic model of WMR with random bounded disturbances are presented. To analyze the convergence of the algorithm, the method of contracting mapping, which shows that the designed controller can make the velocity tracking errors converge to zero completely when the iteration times tend to infinite, is adopted. Simulation results show the effectiveness of D-type ILC in the trajectory tracking problem of WMRs, demonstrating the effectiveness and robustness of the algorithm in the condition of random bounded disturbance. A comparative study conducted between D-type ILC and compound cosine function neural network (NN) controller also demonstrates the effectiveness of the ILC strategy.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献