A Framework-Based Approach for Fault-Tolerant Service Robots

Author:

Ahn Heejune1,Loh Woong-Kee2,Yeo Woon-Young3

Affiliation:

1. Department of Electrical Engineering and Information Technology, Seoul National University of Science and Technology (SeoulTech), Seoul, South Korea

2. Department of Multimedia, Sungkyul University, Anyang-shi, Gyeonggi-do, South Korea

3. Department of Information and Communication Engineering, Sejong University, Seoul, South Korea

Abstract

Recently the component-based approach has become a major trend in intelligent service robot development due to its reusability and productivity. The framework in a component-based system should provide essential services for application components. However, to our knowledge the existing robot frameworks do not yet support fault tolerance service. Moreover, it is often believed that faults can be handled only at the application level. In this paper, by extending the robot framework with the fault tolerance function, we argue that the framework-based fault tolerance approach is feasible and even has many benefits, including that: 1) the system integrators can build fault tolerance applications from non-fault-aware components; 2) the constraints of the components and the operating environment can be considered at the time of integration, which – cannot be anticipated eaily at the time of component development; 3) consistency in system reliability can be obtained even in spite of diverse application component sources. In the proposed construction, we build XML rule files defining the rules for probing and determining the fault conditions of each component, contamination cases from a faulty component, and the possible recovery and safety methods. The rule files are established by a system integrator and the fault manager in the framework controls the fault tolerance process according to the rules. We demonstrate that the fault-tolerant framework can incorporate widely accepted fault tolerance techniques. The effectiveness and real-time performance of the framework-based approach and its techniques are examined by testing an autonomous mobile robot in typical fault scenarios.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Preliminary Systematic Mapping on Software Engineering for Robotic Systems;Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops;2020-06-27

2. AN IMPROVED IMMUNE-INSPIRED SELF-HEALING APPROACH BASED ON SWARM AGGREGATION ALGORITHM FOR MULTI-ROBOT SYSTEM;International Journal of Robotics and Automation;2019

3. EmSBot;International Journal of Advanced Robotic Systems;2016-11-28

4. Service-oriented approach to fault tolerance in CPSs;Journal of Systems and Software;2015-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3