Convergence of Object Focused Simultaneous Estimation of Optical Flow and State Dynamics

Author:

Bauer Nicholas1,Pathirana Pubudu1,Ekanayake Samitha1,Srinivasan Mandyam2

Affiliation:

1. Deakin University, Waurn Ponds, Victoria, Australia

2. University of Queensland, Brisbane, Queensland, Australia

Abstract

The purpose of this study is to prove the convergence of the simultaneous estimation of the optical flow and object state (SEOS) method. The SEOS method utilizes dynamic object parameter information when calculating optical flow in tracking a moving object within a video stream. Optical flow estimation for the SEOS method requires the minimization of an error function containing the object's physical parameter data. When this function is discretized, the Euler-Lagrange equations form a system of linear equations. The system is arranged such that its property matrix is positive definite symmetric, proving the convergence of the Gauss-Seidel iterative methods. The system of linear equations produced by SEOS can alternatively be resolved by Jacobi iterative schemes. The positive definite symmetric property is not sufficient for Jacobi convergence. The convergence of SEOS for a block diagonal Jacobi is proved by analysing the Euclidean norm of the Jacobi matrix. In this paper, we also investigate the use of SEOS for tracking individual objects within a video sequence. The illustrations provided show the effectiveness of SEOS for localizing objects within a video sequence and generating optical flow results.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3