Affiliation:
1. Department of Chemistry and Materials Research Science and Engineering Center, University of Utah, Salt Lake City, Utah, USA
2. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
Abstract
Nature has had millions of years to optimize photonic crystals - an endeavour mankind only really began in the 1980s. Often, we attempt to mimic and expand upon nature's designs in creating photonic structures that meet our technology-driven needs. While this strategy can be fruitful in fabricating novel architectures, one has to keep in mind that nature designed and optimized these structures for specific applications (e.g., colouration, camouflaging, signalling), but certainly not for use in photonic chips and optical circuits. To take full advantage of biological structures as blueprints for nanotechnology, it is important to understand the purpose and development of natural structural colours. In this review, we will discuss important aspects of the design, formation and evolution of the structures embedded in beetle exoskeletons that are responsible for their striking colouration. In particular, we will focus on the purpose of structural colours for camouflaging, mimicry and signalling. We will discuss their evolutionary and ecological development and compare the development of beetles with and without structural colours. Examples of non-colour-related structural functionalities will also be introduced and briefly discussed. Finally, a brief overview of nature's synthesis strategies for these highly evolved structures will be given, with particular focus on membrane assembly.
Subject
Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献