1. L. Lusanna and M. Pauri, Explaining Leibniz equivalence as difference of non‐inertial Appearances: Dis‐solution of the Hole Argument and physical individuation of point‐events, History and Philosophy of Modern Physics 37, 692 (2006) (arXiv gr‐qc/0604087); The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity. I: Dynamical Synchronization and Generalized Inertial Effects; II: Dirac versus Bergmann Observables and the Objectivity of Space‐Time, Gen. Rel. Grav. 38, 187 and 229 (2006) (arXiv gr‐qc/0403081 and 0407007); Dynamical Emergence of Instantaneous 3‐Spaces in a Class of Models of General Relativity, in Relativity and the Dimensionality of the World, ed. V. Petkov (Springer Series Fundamental Theories of Physics, Berlin, 2007) (arXiv gr‐qc/0611045).
2. M. Soffel, S.A. Klioner, G. Petit, P. Wolf, S.M. Kopeikin, P. Bretagnon, V.A. Brumberg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J. Ries, P.K. Seidelmann, D. Vokroulicky', C. Will and Ch. Xu, The IAU 2000 Resolutions for Astrometry, Celestial Mechanics and Metrology in the Relativistic Framework: Explanatory Supplement. Astron. J., 126, pp.2687–2706, (2003) (astro‐ph/0303376).
3. IERS Conventions (2003), eds. D.D. McCarthy and G. Petit, IERS TN 32 (2004), Verlag des BKG. G.H. Kaplan, The IAU Resolutions on Astronomical Reference Systems, Time Scales and Earth Rotation Models, U.S.Naval Observatory circular No. 179 (2005) (astro‐ph/0602086).
4. L. Lusanna, Relativistic Metrology: from Earth to Astrophysics, In‐Tech E‐Book Modern Metrology Concerns, 2012 (ISBN 978‐953‐51‐0584‐8).
5. S.G. Turishev, M. Shao and K.L. Nordtvedt, Experimental Design of the LATOR Mission, arXiv gr‐qc/0410044 (2004). S.G. Turyshev and V.T. Toth, The Pioneer Anomaly Living Rev. Rel. 13, n.4 (2010) (arXiv1001.3686).