Application Overview of Quantum Computing for Gas Turbine Design and Optimization

Author:

Thomas Jayachandran Aurthur Vimalachandran1

Affiliation:

1. Department of Theory of Aircraft Engines, Samara University, Samara, Russia

Abstract

Conceptual designs require optimization methods to identify the best fit in the system. The article investigates the application of quantum computation in gas turbine design and simulation problems with current technologies, approaches and potential capabilities. Quantum optimization algorithms and quantum annealers help in predicting overall efficiency and optimizing various operating parameters of the gas turbine. A comparison of both classical and quantum computers has been discussed briefly. The classical model challenges are mitigated with the use of quantum computation. A novel hybrid model for simulating gas turbines has been proposed, which consists of a combination of both physics and machine learning to eliminate few of the critical problems faced. This review elaborates application of quantum computing based machine learning for design and optimization of a gas turbine. The overall states of the gas paths of gas turbines could be analyzed using the quantum computing model in the future.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3