Affiliation:
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Abstract
Noncommutativity error of a strapdown inertial navigation system (SINS) in an unmanned aerial vehicle's (UAV) vibration environment is analysed. The traditional analysis of noncommutativity errors is based on a coning motion model, which is inconsistent with a UAV's vibration environment. In this paper the UAV's vibration form is discussed and is modelled as a sinusoidal angular vibration and a random angular vibration. Then, SINS motion models under these two forms of vibration are built up and the formulas for the noncommutativity errors are derived separately. In addition, the effect of a multi-sample algorithm is explored, which is an effective method for compensating for noncommutativity errors in cases of coning motion. Finally, the UAV's vibration environment is simulated and it is indicated that the simulation results of the SINS's noncommutativity errors are consistent with theoretical analysis.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献