Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator

Author:

Hošovský Alexander1,Novák-Marcinčin Jozef1,Pitel' Ján1,Boržíková Jana1,Židek Kamil1

Affiliation:

1. Faculty of Manufacturing Technologies, Technical University of Košice, Slovakia

Abstract

Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Inverse Dynamics-Based Control Approach for Compliant Control of Pneumatic Artificial Muscles;Actuators;2022-04-16

2. Position-pose Control of a Pneumatic 3-UPU Robot Based on Immersion and Invariance;International Journal of Control, Automation and Systems;2022-02-01

3. Mathematical model of the artificial muscle with two actuators;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-07-17

4. Weighted multiple model adaptive boundary control for a flexible manipulator;Science Progress;2019-11-06

5. High Precision Adaptive Robust Neural Network Control of a Servo Pneumatic System;Applied Sciences;2019-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3