Affiliation:
1. University Campus Bio-Medico Rome, Rome Italy
Abstract
In this paper we report on the design, modeling, experimental testing and scaling analysis of a novel MAgnetic Variable stiffnEess spRIng-Clutch (MAVERIC) device, which may be used as the elastic element of Variable Stiffness Actuators (VSAs). The device, comprising two co-axial diametrically magnetized hollow cylinders, has two degrees of freedom: a rotation of the two cylinders around the common axis and a relative translation along the same axis. For small rotations, the torque arising from the magnetic interaction of the two cylinders is almost linearly proportional to their relative rotation, as in mechanical torsion springs. In addition, the stiffness of the equivalent spring can be varied continuously from a maximum value down to exactly zero by changing the axial overlap of the two cylinders. In this way the proposed device can be used both as a clutch (i.e., perfectly compliant element) and as a variable stiffness torsion spring. A prototype, designed after magnetostatic FEM simulations, has been built and experimentally characterized. The developed MAVERIC has an experimentally determined maximum transmissible torque of 109.81mNm, while the calculated maximum stiffness is 110.2mNmrad−1. The amplitude of the torque-angle characteristic can be tuned linearly with a sensitivity of 12.63mNmmm−1 rad−1. Further simulations have been computed parameterizing the geometry and the number of pole pairs of the magnets. The maximum torque density reached for one pole pair is 47.21 · 103 Nm m−3, whereas for a fixed geometry similar to that of the developed prototype, the maximum torque is reached for seven pole pairs. Overall, compared to mechanical springs, MAVERIC has no fatigue or overloading issues. Compared to other magnetic couplers, torsion stiffness can be varied continuously from a maximum value down to exactly zero, when the device acts as a disengaged clutch, disconnecting the load from the actuator.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献