Metabolic Cost and Mechanical Efficiency of a Novel Handle-Based Device for Wheelchair Propulsion

Author:

Puchinger Markus,Kurup Nithin,Gstaltner Karin,Pandy Marcus G.,Gföhler Margit

Abstract

Objective: To investigate differences in metabolic cost and gross mechanical efficiency of a novel handlebased wheelchair propulsion device and to compare its performance with conventional push-rim propulsion.Design: Double-group comparative study between 2 different propulsion methods.Participants: Eight paraplegic individuals and 10 non-disabled persons.Methods: Participants performed the same exercise using a push-rim device and the novel handle-based device on a wheelchair- based test rig. The exercise consisted of a combined submaximal and maximal test. Power output, oxygen uptake, ventilation, respiratory exchange ratio and heart rate were recorded continuously during the tests. Analysis of variance was performed to determine the effects of group, mode and on power output.Results: Submaximal exercise resulted in a higher efficiency for the novel device and significant main effects of propulsion mode on all investigated parameters, except heart rate. On the respiratory exchange ratio, a significant interaction effect was found for both mode and group. The maximal exercise resulted in a higher peak power output and lower peak heart rate during propulsion using the handle-based device. A significant main effect on mode for mean peak power output, ventilation and heart rate was also observed.Conclusion: Wheelchair propulsion using the handle-based device resulted in lower physical responses and higher mechanical efficiency, suggesting that this novel design may be well suited for indoor use, thereby offering an attractive alternative to pushrim wheelchairs. LAY ABSTRACTThe push-rim is the preferred mode of propulsion for more than 90% of all self-propelled wheelchair users, even though it is the least efficient. Furthermore, push-rim propulsion is highly strenuous for the musculoskeletal system and often leads to severe upper limb injuries. Alternative modes of manual wheelchair propulsion are available (e.g. arm-crank propulsion (handbikes) and lever-propulsion) but most of these are bulky, heavy and mostly suitable for outdoor use. The aim of the current study was to investigate differences in metabolic cost and mechanical efficiency for a novel handle-based and ergonomically optimized device and to compare its performance with conventional push-rim propulsion. Eight paraplegic subjects and 10 non-disabled controls performed exercises at different power resistances. The results show that the performance of the handle-based device is below that of the handbike, but that it out-performs lever-propelled and push-rim wheelchairs, suggesting that this novel design is more suited to indoor use and may therefore be an attractive alternative to push-rims for activities of daily living.

Publisher

Medical Journals Sweden AB

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3