Limited debridement combined with ReCell® Techniques for deep second-degree burns

Author:

Zhang Yue,Guo Kai,Tian Chenyang,Tong Ling,Hu Dahai,Wang Yunchuan

Abstract

Background: The purpose of this article is to introduce a method that combines limited debridement and ReCell® autologous cell regeneration techniques for the treatment of deep second-degree burn wounds. Method: A total of 20 patients suffered with deep second-degree burns less than 10% of total body surface area (TBSA) who were admitted to our department, from June 2019 to June 2021, participated in this study. These patients first underwent limited debridement with an electric/pneumatic dermatome, followed by the ReCell® technique for secondary wounds. Routine treatment was applied to prevent scarring after the wound healed. Clinical outcomes were scored using the Vancouver Scar Scale (VSS). Results: All wounds of the patients healed completely. One patient developed an infection in the skin graft area and finally recovered by routine dressing changes. The average healing time was 12 days (range: 10–15 days). The new skin in the treated area was soft and matched the colour of the surrounding normal skin and the VSS score ranged from 3~5 for each patient. Of the 20 patients, 19 were very satisfied and 1 was satisfied. Conclusions: This article reports a useful treatment method that combines electric dermatome-dependent limited debridement and the ReCell® technique for the treatment of deep second-degree burn wounds. It is a feasible and effective strategy that is easy to implement and minimally invasive, and it is associated with a short healing time, mild scar formation and little damage to the donor skin area.

Publisher

MJS Publishing, Medical Journals Sweden AB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3