Author:
Wiegell Stine R.,Hendel Kristoffer,Fuchs Christine S.K.,Gehl Julie,Vissing Mille,Bro Sara W.,Troelsen Jesper T.,Jemec Gregor B.E.,Haedersdal Merete
Abstract
In electrochemotherapy, permeabilization of the cell membrane by electric pulses increases the anti-tumour effect of chemotherapeutics. In calcium electroporation, chemotherapy is replaced by calcium chloride with obvious benefits. This study explores the effect and underlying mechanisms of calcium electroporation on basal cell carcinomas using either high- or low-frequency electroporation. Low-risk primary basal cell carcinomas were treated in local anaesthesia with intratumoral calcium chloride followed by electroporation with high (167 kHz) or low (5 kHz) frequencies. Non-complete responders were retreated after 3 months. The primary endpoint was tumour response 3 months after last calcium electroporation. Plasma membrane calcium ATPase was examined in various cell lines as plasma membrane calcium ATPase levels have been associated with calcium electroporation efficacy. Twenty-two out of 25 included patients complete the study and 7 of these (32%) achieved complete response at 3 months with no difference in efficacy between high- and low-frequency pulses. High-frequency calcium electroporation was significantly less painful (p=0.03). Plasma membrane calcium ATPase was increased 16–32-fold in basal cell carcinoma cell lines compared with 4 other cancer cell lines. Calcium electroporation for low-risk basal cell carcinomas does not fulfil the requirements of a new dermatological basal cell carcinoma treatment but may be useful as adjuvant treatment to surgery in more advanced basal cell carcinomas. The elevated PMCA levels in basal cell carcinomas may contribute to low efficacy.
Publisher
MJS Publishing, Medical Journals Sweden AB