Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions

Author:

Paoli John,Pölönen Ilkka,Salmivuori Mari,Räsänen Janne,Zaar Oscar,Polesie Sam,Koskenmies Sari,Pitkänen Sari,Övermark Meri,Isoherranen Kirsi,Juteau Susanna,Ranki Annamari,Grönroos Mari,Neittaanmäki Noora

Abstract

Malignant melanoma poses a clinical diagnostic problem, since a large number of benign lesions are excised to find a single melanoma. This study assessed the accuracy of a novel non-invasive diagnostic technology, hyperspectral imaging, for melanoma detection. Lesions were imaged prior to excision and histopathological analysis. A deep neural network algorithm was trained twice to distinguish between histopathologically verified malignant and benign melanocytic lesions and to classify the separate subgroups. Furthermore, 2 different approaches were used: a majority vote classification and a pixel-wise classification. The study included 325 lesions from 285 patients. Of these, 74 were invasive melanoma, 88 melanoma in situ, 115 dysplastic naevi, and 48 non-dysplastic naevi. The study included a training set of 358,800 pixels and a validation set of 7,313 pixels, which was then tested with a training set of 24,375 pixels. The majority vote classification achieved high overall sensitivity of 95% and a specificity of 92% (95% confidence interval (95% CI) 0.024–0.029) in differentiating malignant from benign lesions. In the pixel-wise classification, the overall sensitivity and specificity were both 82% (95% CI 0.005–0.005). When divided into 4 subgroups, the diagnostic accuracy was lower. Hyperspectral imaging provides high sensitivity and specificity in distinguishing between naevi and melanoma. This novel method still needs further validation.

Publisher

Medical Journals Sweden AB

Subject

Dermatology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3