Gender bias in AI-based decision-making systems: a systematic literature review

Author:

Nadeem Ayesha,Marjanovic Olivera,Abedin Babak

Abstract

The related literature and industry press suggest that artificial intelligence (AI)-based decision-making systems may be biased towards gender, which in turn impacts individuals and societies. The information system (IS) field has recognised the rich contribution of AI-based outcomes and their effects; however, there is a lack of IS research on the management of gender bias in AI-based decision-making systems and its adverse effects. Hence, the rising concern about gender bias in AI-based decision-making systems is gaining attention. In particular, there is a need for a better understanding of contributing factors and effective approaches to mitigating gender bias in AI-based decision-making systems. Therefore, this study contributes to the existing literature by conducting a Systematic Literature Review (SLR) of the extant literature and presenting a theoretical framework for the management of gender bias in AI-based decision-making systems. The SLR results indicate that the research on gender bias in AI-based decision-making systems is not yet well established, highlighting the great potential for future IS research in this area, as articulated in the paper. Based on this review, we conceptualise gender bias in AI-based decision-making systems as a socio-technical problem and propose a theoretical framework that offers a combination of technological, organisational, and societal approaches as well as four propositions to possibly mitigate the biased effects. Lastly, this paper considers future research on the management of gender bias in AI-based decision-making systems in the organisational context.

Publisher

Australian Journal of Information Systems

Subject

Information Systems and Management,Human-Computer Interaction,Business, Management and Accounting (miscellaneous),Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3