Creation of a Medical Knowledge Base for Unify the Development of Clinical Decision Support Systems Based on the National Metathesaurus

Author:

Zarubina Tat’yana V.ORCID,Rauzina Svetlana E.ORCID,Astanin Pavel A.ORCID,Koroleva Julia I.ORCID,Ronzhin Lev V.ORCID,Borisov Alexsandr A.ORCID,Afanasyeva Maria A.ORCID,Usova Anastasia V.ORCID

Abstract

Background: The rapid growth in the volume of medical data, the extensive possibilities of information technology, the transfer of medical document flow to electronic format generates a high demand for the introduction of information and reference assistance tools and clinical decision support systems (CDSS). Work on the creation of CDSS currently combines the expert activities of doctors with the work of information technology specialists, mathematical statisticians, data scientists, knowledge engineers. Most of the developments involving the formation of knowledge bases are created in isolation, without the use of universal approaches that allow combining various solutions. At the heart of any medical knowledge base (MKB) there is a thesaurus, which is a systematized dictionary of terms that helps to standardize terminology, which makes it possible to speed up the search and exchange of information. It includes concept terms and relationships between them, as well as synonyms and various attributes. Aims — creation of a national medical metathesaurus, built on the ontological principle and the development of MKB based on it. Methods. International systematized dictionary of medical terms UMLS (Unified Medical Language System); clinical recommendations for 22 groups of nosologies; reference books of the federal portal of normative reference information of the Ministry of Health of the Russian Federation; electronic medical records – 330 thousand (dataset MIMIC-IV); abstracts of PubMed publications-28 million. Semantic analyzers SemRep (Semantic Repository) and MetaMap were used; methods for evaluating lexical similarity, connectivity, contextual combinability of entities in a subgraph, and mathematical statistics. Results. The first version of the Unified National Medical Nomenclature (UNMN) has been created. It is proved that ontological models are an effective way of presenting structured information. Components of information search engines have been created. Analytical tools for working with metathesaurus have been developed. Conclusions. On the basis of the UNMN and the created tools, it is possible to automate the formation of a clinical picture of the disease (knowledge base) and single-platform development of the CDSS.

Publisher

Paediatrician Publishers LLC

Reference44 articles.

1. Указ Президента Российской Федерации от 10 октября 2019 г. № 490 «О развитии искусственного интеллекта в Российской Федерации». [Decree of the President of the Russian Federation No. 490 of 10 October 2019 “O razvitii iskusstvennogo intellekta v Rossijskoj Federacii”. (In Russ.)] Available from: http://www.kremlin.ru/acts/bank/44731 (accessed: 02.10.2023).

2. Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021

3. Искусственный интеллект поможет московским терапевтам в постановке диагнозов // Коммерсантъ. 08.09.2023. [Iskusstvennyj intellekt pomozhet moskovskim terapevtam v postanovke diagnozov. Kommersant. 08.09.2023. (In Russ.)] Available from: https://www.kommersant.ru/doc/6199795 (accessed: 02.10.2023).

4. Гусев А.В., Астапенко Е.М., Иванов И.В., и др. Принципы формирования доверия к системам искусственного интеллекта для здравоохранения // Вестник Росздравнадзора. — 2022. — № 2. — С. 25–33. [Gusev AV, Astapenko EM, Ivanov IV, et al. Principles for building confidence in artificial intelligence systems for healthcare. Vestnik Roszdravnadzora. 2022;2:25–33. (In Russ.)]

5. Поповьян Р.А., Будкова Н.Н., Раковский А.А., и др. Составление тезауруса — важный шаг по настройке работы информационной системы в любой области медицины // Врач и информационные технологии. — 2005. — № 4. — С. 57–61. [Popovyan RA, Budkova NN, Rakovskij AA, et al. Sostavlenie tezaurusa-vazhnyj shag po nastrojke raboty informacionnoj sistemy v lyuboj oblasti mediciny. Vrach i informacionnye tekhnologii. 2005;4:57–61. (In Russ.)]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3