Author:
Chow Chi-Ching Gary,Kong Yu-Hin,Wong Chi-Ling
Abstract
Successful athletes are better at performing efficiently than the inferior in particular sports scenarios, while most existing performance tests in the field do not cover the sport-specific context fully. There were two purposes in this study: 1) to evaluate the reliability and validity of a novel Sector Reactive Agility Test (SRAT) which mimicked a reactive-agility defensive scenario in Touch, and 2) to determine the relationships between Touch players' agility and sprint performance. Twenty male Touch players from the elite division and another 20 from the amateur division were invited to participate in this study. They performed SRAT and a 20-m sprint test in two days. Excellent reliability and high precision were found in SRAT (intraclass correlation coefficient [ICC] = 0.97) and 20-m sprint test (ICC = 0.91). The time of completion in SRAT of the elite Touch players (23.93 s) was 2.95 s significantly shorter than that of the amateur players with a large effect size. Elite Touch players also demonstrated moderately faster (0.11 s) than the amateur Touch players in the 20-m sprint test. SRAT demonstrated high test-retest reliability and accuracy in measuring reactive-agility performance in Touch. The minimal detectable changes in SRAT and 20-m sprint test were 1.04 s and 0.13 s respectively. Furthermore, the speed of the 20-m sprint test and playing experience were associated with the time of completion of SRAT, explaining 56% of its variance (p < 0.001). Other factors, such as cognition and the ability to control own central gravity, are deemed possible to influence Touch players' agility. Therefore, SRAT should be adopted in Touch player selection and training monitoring.
Publisher
Journal of Sports Science and Medicine
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference36 articles.
1. Arede J., Carvalho M., Esteves P., de las Heras B., Leite N. (2021) Exploring the effects of LED lighting training program on motor performance among young athletes. Creativity Research Journal 33, 63-73. Crossref
2. Journal of Sports Science and Medicine Beaven R. P., Highton J. M., Thorpe M., Knott E. V., Twist C. (2014) Movement and physiological demands of international and regional men's touch rugby matches. Journal of Strength and Conditioning Research 28, 3274-3279. Crossref
3. Journal of Sports Science and Medicine Chow G. C. C. (2020) Global positioning system activity profile in touch rugby: does training meet the match-play intensity in a two-day international test match series?. Journal of Sports Science & Medicine 19, 613-619. Pubmed
4. Journal of Sports Science and Medicine Chow G. C. C., Chung J. W. Y., Ma A. W. W., Macfarlane D. J., Fong S. S. M. (2017) Sensory organisation and reactive balance control of amateur rugby players: a cross-sectional study. European Journal of Sport Science 17, 400-406. Crossref
5. Journal of Sports Science and Medicine de-Oliveira L. A., Matos M. V., Fernandes I. G. S., Nascimento D. A., da Silva-Grigoletto M. E. (2021) Test-retest reliability of a visual-cognitive technology (Blazepod™) to measure response time. Journal of Sports Science & Medicine 20, 179-180. Crossref
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献