CREATION OF A COMPUTER-ASSISTED MATHEMATICAL MODEL FOR THE RAW MATERIALS BIOLOGICAL PROCESSING

Author:

TLEBAYEV Manat B.,BIIBOSUNOV Bolotbek I.,TASZHUREKOVA Zhazira K.,BAIZHARIKOVA Marina A.,AITBAYEVA Zamira K.

Abstract

During anaerobic fermentation, the alternation of liquid and solid substances in the substrate makes the bacteria adapt to changing conditions, which significantly reduces the biogas yield, reduces the methane concentration in it, and increases the retention time of the substrate in the bioreactor. The solution to this problem when using cavitation destruction can not only minimize temperature nonuniformity but also solve the problem of the same load on the biocenosis and maximum contact surface of bacteria during anaerobic fermentation in the bioreactor. Studies have shown that the composition and quantity of biogas are not constant and depend on the type of substrate being processed and the biogas production technology. To stabilize the composition of the resulting biogas and bring it to a high-quality, independent alternative energy source, it is possible using membrane destruction or crushing of organic raw materials. The energy consumption, fermentation time, and methane concentration in the final biogas output depend on the primary treatment. This work proposes a mathematical model of the process of crushing, dispersing, and blending waste from dairy and fattening farms, which allows to determine and optimize its operating parameters, as well as to promote effective anaerobic fermentation of the substrate in the bioreactor. To determine the mathematical model for the raw materials biological processing with known theoretical or experimental parameters, numerical methods were used, which are one of the powerful mathematical tools for solving the problem. The results of the operational parameters of the studied processes were obtained using the Mathcad environment and tested in the SCADA Trace Mode 6.10.1 automated process control and monitoring software package.

Publisher

Dr. D. Scientific Consulting

Subject

Education,General Chemistry,Multidisciplinary,Pharmacy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact elements of feed grinder: a review;EUREKA: Physics and Engineering;2023-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3