DESIGN OF EXTRA CAVITY PHOTOACOUSTIC SPECTROMETER BASED ON BLUE DIODE LASER IN NO2 (NITROGEN DIOXIDE) GAS DETECTION

Author:

HARJUM ,UTOMO Agung Bambang Setio,MITRAYANA

Abstract

Background: NO2 detection is necessary because NO2 is an air pollutant causing photochemical smog and acid rain. In addition, respiratory diseases are caused by high levels of NO2 in the inhaled air. Aim: The purpose of this study was to detect NO2 using PAS utilizing Arduino Uno, an easy, simple, and low-cost research. Methods: The detection of Nitrogen Dioxide (NO2) gas with a Photoacoustic Spectrometer (PAS) using an Arduino Uno microcontroller has been carried out. The PAS system uses a blue diode laser with a wavelength of 450 nm as the radiation source because this wavelength is suitable for NO2 gas. The intensity of the laser beam is modulated using a modulation system with an on-off scheme using the Arduino Uno. The modulation frequency has been varied to get the maximum detection frequency. The photoacoustic cell used was a single resonator photoacoustic cell with type H. Sound sensor and photodiode were used in this measurement. The amplification of the signal was done by utilizing the Lock-in amplifier, and the constant time of Lock-in amplifier was also determined to optimize the PAS. Nitrogen gas was used to detect background signal. Results and Discussion: From the photoacoustic spectrometer optimization, the results obtained were a laser diode frequency of 1,000 Hz with a duty cycle of 50% and a Lock-in amplifier amplification of 10,000 times with a constant time of 3.3 ms. The maximum concentration reached in this measurement was 6 ppm. The background signal achieved in this measurement was 0.00002 V/W. The lowest detection limit achieved in this measurement was 0.0064 ppm.Conclusion: The gas sample containers containing NO2 with larger sizes tend to have a greater concentration. Sometimes, the NO2 concentration of the large sample gas container was overtaken by the small sample container.

Publisher

Dr. D. Scientific Consulting

Subject

Education,General Chemistry,Multidisciplinary,Pharmacy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3