THE QUATERNARY CHALCOGENIDE COMPOUND Ag2FeGeSe4: A REVISION OF THEIR CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES

Author:

DELGADO Gerzon E.,DELGADO-NIÑO Pilar,QUINTERO Eugenio

Abstract

Background: Quaternary compounds bellowing to the I2-II-IV-VI4 system are of considerable technological interest due to their possible use in the preparation of solar cell and thermoelectric materials devices. In recent years, considerable attention has been focused on the detailed study of quaternary chalcogenide compounds related to the chalcopyrite compounds, particularly AgInSe2, which has emerged as a leading material for the preparation of photovoltaic devices due to their potential applications in solar cell technology. Aims: This work focuses on synthesis, chemical analysis, thermal study, magnetism measurement, and crystal structural characterization of the quaternary semiconductor Ag2FeGeSe4, an essential member of the family I2-II-IV-VI4. Methods: This material was synthesized by the melt and anneal technique. The chemical analysis was carried out by scanning electron microscopy (SEM) and differential thermal analysis (DTA). Magnetic susceptibility () as a function of temperature and magnetization as a function of the magnetic field were also performed, and crystal structure analysis was made employing the Rietveld method with powder X-ray diffraction data. Results and Discussion: The preparation confirms the formation of the quaternary compound with stoichiometric 2:1:1:4 according to the chemical analysis. This quaternary compound melt at 1015 K, and show an antiferromagnetic behavior with Neel temperature TN of 240 K. The Debye temperature (D) estimated for this compound was 194 K. The quaternary chalcogenide compound Ag2FeGeSe4 crystallizes in the orthorhombic space group Pmn21, Z = 4, with unit cell parameters: a = 7.6478(1) Å, b = 6.5071(1) Å, c = 6.4260(1) Å, and V = 319.79(1) Å3, in a wurtzite-stannite arrangement with a Cu2CdGeS4-type structure, which is characterized by a three-dimensional arrangement of slightly distorted AgSe4, FeSe4, and GeSe4 tetrahedra connected by corners. In this structure, each Se atom is coordinated by four cations located at the corners of a slightly distorted tetrahedron, and each cation is tetrahedrally bonded to four anions. Conclusions: The melt and anneal method remains effective for preparing compounds chalcogenides as the quaternary Ag2FeGeSe4, a new member of I2-II-IV-VI4 family of semiconductors, which crystallizes in the non-centrosymmetric space group Pmn21 with diamond-like structure. The crystal structure information of this compound allows explaining their magnetic properties, which in combination with its semiconductor properties make this material a potential aspirant for different applications, mainly in solar cells.

Publisher

Dr. D. Scientific Consulting

Subject

Education,General Chemistry,Multidisciplinary,Pharmacy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3