An efficient method of ovarian stimulation and in vitro embryo production from prepubertal lambs

Author:

Morton K. M.,Catt S. L.,Maxwell W. M. C.,Evans G.

Abstract

The production of embryos from prepubertal lambs is inefficient, partly resulting from the low developmental competence of prepubertal lamb oocytes, and partly because a high proportion of lambs fail to respond to hormone stimulation. The development of a hormone stimulation regimen that all lambs respond to would increase the efficiency of breeding from prepubertal animals. Using a hormone stimulation regimen consisting of oestradiol benzoate (50 µg), a norgestomet implant (1.5 mg), pregnant mare serum gonadotrophin (400 IU) and follicle stimulating hormone (130 mg) all lambs (n = 19) responded to hormone stimulation. Uterine and ovarian weight ranged from 2.8 to 7.2 g (11.8 ± 0.7 g) and from 1.7 to 54.1 (12.5 ± 2.9 g), respectively. The number of ovarian follicles and oocytes recovered ranged from 20.0 to 500.0 (118.2 ± 29.2) and from 13.0 to 455.0 (82.0 ± 24.2), respectively, and oocytes suitable for in vitro production were obtained from all 19 lambs. Uterine weight was related to both bodyweight and growth rate (P < 0.05), although ovarian weight and the number of ovarian follicles were not related to either bodyweight or growth rate. Oocyte cleavage varied between hormone-stimulated lambs (0.0–93.0%; P < 0.05), and 484/775 (62.2%) of the oocytes cultured cleaved. Oocytes from 17 of the 19 lambs (89.5%) developed to the blastocyst stage in vitro, and the proportion of zygotes forming a blastocyst (by Day 7) ranged from 0.0 to 66.7% for individual lambs. Overall, 33.9% of zygotes (n = 164) developed to the blastocyst stage, producing 8.6 ± 2.8 blastocysts per lamb.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3