Grapevine varieties exhibiting differences in stomatal response to water deficit

Author:

Costa Joaquim M.,Ortuño Maria F.,Lopes Carlos M.,Chaves Maria M.

Abstract

Knowledge on variety traits and physiological responses to stress is still scarce in Vitis vinifera L., limiting the optimisation of irrigation and breeding for high water use efficiency. We have characterised five grapevine varieties using thermal imaging, leaf gas exchange, leaf morphology and carbon isotope composition. Plants of the varieties Aragonez, Trincadeira, Cabernet Sauvignon, Syrah and Touriga Nacional were grown in field conditions. Two experiments were performed. In Experiment I (2006), vines of Aragonez and Trincadeira were either well irrigated (WI, 80% ETc), non-irrigated but rain fed (NI) or subjected to regulated deficit irrigation (RDI, 40% ETc) and studied along the summer season. In Experiment II (2006 and 2007), vines of the five varieties were subjected to RDI (30–40% ETc) and studied at veraison. In Experiment I, leaf temperature (Tleaf) correlated negatively with stomatal conductance (gs) and leaf water potential (Ψpd). The inverse relationship between gs and Tleaf was highly significant in the afternoon. In Experiment II, the different genotypes showed different Tleaf for similar Ψpd. Stomatal density did not correlate with gs suggesting that varieties have different stomatal control. Our results show that combined measurements of canopy temperature and Ψpd can aid in better understanding of stomatal regulation in different grapevine varieties. Such variation in stomatal regulation should be taken into account in determining irrigation strategies.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3