Author:
Yi Young-Joo,Sutovsky Miriam,Song Won-Hee,Sutovsky Peter
Abstract
Ubiquitination is a covalent post-translational modification of proteins by the chaperone protein ubiquitin. Upon docking to the 26S proteasome, ubiquitin is released from the substrate protein by deubiquitinating enzymes (DUBs). We hypothesised that specific inhibitors of two closely related oocyte DUBs, namely inhibitors of the ubiquitin C-terminal hydrolases (UCH) UCHL1 (L1 inhibitor) and UCHL3 (L3 inhibitor), would alter porcine oocyte maturation and influence sperm function and embryo development. Aberrant cortical granule (CG) migration and meiotic spindle defects were observed in oocytes matured with the L1 or L3 inhibitor. Embryo development was delayed or blocked in oocytes matured with the general DUB inhibitor PR-619. Aggresomes, the cellular stress-inducible aggregates of ubiquitinated proteins, formed in oocytes matured with L1 inhibitor or PR-619, a likely consequence of impaired protein turnover. Proteomic analysis identified the major vault protein (MVP) as the most prominent protein accumulated in oocytes matured with PR-619, suggesting that the inhibition of deubiquitination altered the turnover of MVP. The mitophagy/autophagy of sperm-contributed mitochondria inside the fertilised oocytes was hindered by DUB inhibitors. It is concluded that DUB inhibitors alter porcine oocyte maturation, fertilisation and preimplantation embryo development. By regulating the turnover of oocyte proteins and mono-ubiquitin regeneration, the DUBs may promote the acquisition of developmental competence during oocyte maturation.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献