Zebularine significantly improves the preimplantation development of ovine somatic cell nuclear transfer embryos

Author:

Cao Hui,Li JunORCID,Su Wenlong,Li Junjie,Wang Zhigang,Sun Shuchun,Tian Shujun,Li Lu,Wang Hanyang,Li Jiexin,Fang Xiaohuan,Wei Qiaoli,Liu Chuang

Abstract

Aberrant DNA methylation reduces the developmental competence of mammalian somatic cell nuclear transfer (SCNT) embryos. Thus, hypomethylation-associated drugs are beneficial for improving reprogramming efficiency. Therefore, in the present study we investigated the effect of zebularine, a relatively novel DNA methyltransferase inhibitor, on the developmental potential of ovine SCNT embryos. First, reduced overall DNA methylation patterns and gene-specific DNA methylation levels at the promoter regions of pluripotency genes (octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog) were found in zebularine-treated cumulus cells. In addition, the DNA methylation levels in SCNT embryos derived from zebularine-treated cumulus cells were significantly reduced at the 2-, 4-, 8-cell, and blastocyst stages compared with their corresponding controls (P<0.05). The blastocyst rate was significantly improved in SCNT embryos reconstructed by the cumulus donor cells treated with 5nM zebularine for 12h compared with the control group (25.4±1.6 vs 11.8±1.7%, P<0.05). Moreover, the abundance of Oct4 and Sox2 mRNA was significantly increased during the preimplantation stages after zebularine treatment (P<0.05). In conclusion, the results indicate that, in an ovine model, zebularine decreases overall DNA methylation levels in donor cumulus cells and reconstructed embryos, downregulates the DNA methylation profile in the promoter region of pluripotency genes in donor cells and ultimately elevates the expression of pluripotency genes in the reconstructed embryos, which can lead to improved development of SCNT embryos.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3