Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms

Author:

Carlson J. D.,Bradshaw Larry S.,Nelson Ralph M.,Bensch Randall R.,Jabrzemski Rafal

Abstract

The application of a next-generation dead-fuel moisture model, the ‘Nelson model’, to four timelag fuel classes using an extensive 21-month dataset of dead-fuel moisture observations is described. Developed by Ralph Nelson in the 1990s, the Nelson model is a dead-fuel moisture model designed to take advantage of frequent automated weather observations. Originally developed for 10-h fuels, the model is adaptable to other fuel size classes through modification of the model’s fuel stick parameters. The algorithms for dead-fuel moisture in the National Fire Danger Rating System (NFDRS), on the other hand, were originally developed in the 1970s, utilise once-a-day weather information, and were designed to estimate dead-fuel moisture for mid-afternoon conditions. Including all field observations over the 21-month period, the Nelson model showed improvement over NFDRS for each size fuel size class, with r2 values ranging from 0.51 (1000-h fuels) to 0.79 (10-h fuels). However, for observed fuel moisture at or below 30%, the NFDRS performed better than the Nelson model for 1-h fuels and was about the same accuracy as the Nelson for 10-h fuels. The Nelson model is targeted for inclusion in the next-generation NFDRS.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3