Stratification of microbial biomass C and N and gross N mineralisation with soil depth in two contrasting Western Australian agricultural soils

Author:

Murphy D. V.,Sparling G. P.,Fillery I. R. P.

Abstract

The distribution of microbial biomass C and N and the decline in gross N mineralisation and NH4+ consumption with soil depth was investigated in 2 soils with different soil texture and land use. Soils were from an annual pasture on a loamy sand and from a sandy clay loam previously cropped with wheat. Intact soil cores were collected from the surface 0–10 cm in steel tubes and were sampled in 2·5 cm layers. Disturbed soil down to 50 cm was collected in 10 cm sections using a sand auger. Microbial biomass was estimated by chloroform fumigation and 0·5 M K2SO4 extraction. Microbial biomass C was determined from the flush in ninhydrin-positive compounds, and microbial biomass N from the flush in total soluble N after K2S2O8 oxidation. Gross N mineralisation and NH4+ consumption were estimated by 15N isotopic dilution using 15NH3 gas injection to label the soil 14NH4+ pool with 15N. The pattern of distribution of the microbial biomass and the rate of N transformations were similar for both soils. There was a rapid decline in microbial biomass C and N and gross N mineralisation with soil depth. Approximately 55% of the microbial biomass, 70–88% of gross N mineralisation, and 46–57% of NH4+ consumption was in the surface 0–10 cm in both soils. There was also a stratification of microbial biomass and gross N mineralisation within the 0–10 cm layer of intact soil cores. It was estimated that one-quarter of the total microbial biomass and at least one-half of the total gross N mineralisation within the soil profiles (0–50 cm) was located in the surface 2·5 cm layer. These results demonstrate the importance of the surface soil layer as a major source of microbial activity and inorganic N production. There was a strong correlation between the distribution of microbial biomass and the gross rate of mineralisation of soil organic N within the soil profile.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3