Comparative enteric-methane emissions of dairy farms in northern Victoria, Australia

Author:

Munidasa SinekaORCID,Cullen BrendanORCID,Eckard RichardORCID,Talukder SaranikaORCID,Barnes Lachlan,Cheng LongORCID

Abstract

Context Enteric methane (CH4) is a source of greenhouse gas (GHG) in agriculture, which needs to be reduced. A variety of feeding systems for dairy production is being used in south-eastern Australia, but there are few studies that compare CH4 emissions and emission intensity (EI) of milk production across these systems. Aims The objective was to estimate the lactating cows’ enteric-CH4 emissions, EI and their seasonal changes, across different feeding systems in northern Victoria, Australia. Methods A Tier 2 inventory methodology was used to estimate the enteric-CH4 emissions and EI. Four case-study farms were selected to represent a range of feeding systems, Farms A, B, C and D were categorised as System 4–5 (hybrid–total mixed ration system), System 4 (hybrid system), System 2 (moderate–high bail system) and System 2 respectively. Monthly feed, animal and production data were sourced from June 2019 to May 2020. Key results Average enteric-CH4 emissions of Farms A and B (13.1 and 12.9 kg CO2e/head.day respectively) were greater than those of Farms C and D (11.7 and 11.6 kg CO2e/head.day respectively). Furthermore, CH4 EI was greater in Farms C and D (0.49 and 0.48 CO2-e kg/kg fat- and protein-corrected milk (FPCM) respectively) and it was lower in both Farms A and B (0.46 CO2-e kg/kg FPCM). Overall, Farms A and B using Feeding-system 4–5 with greater-producing cows produced more CH4 but with less CH4 EI than did the Farms C and D, which are mainly pasture-based. Conclusions These findings suggest that to reduce CH4 EI requires a move towards Feeding-system 4–5. However, on the basis of the results of the current study, pasture-based systems have an advantage over hybrid/total mixed ration feeding systems, as these farms have lower absolute CH4 emissions, which helps address climate change. Implications Estimation of CH4 emissions, EI and seasonal changes in them gives farmers the opportunity to identify the mitigation strategies and plan specific strategies that fit the particular feeding system and season. However, more research needs to be conducted to check the feasibility of doing this.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Reference25 articles.

1. Agriculture Victoria (2021) Victorian dairy industry fast facts. Available at [verified 7 March 2023]

2. Allen MR, Babiker M, Chen Y, de Coninck H, Connors S, van Diemen R, Dube OP, Ebi KL, Engelbrecht F, Ferrat M, . (2018) Summary for policymakers. In ‘Global Warming of 1.5°C: an IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty’. (Eds V Masson-Delmotte, P Zhai, H-O Pörtner, D Roberts, J Skea, PR Shukla, A Pirani, W Moufouma-Okia, C Péan, R Pidcock, S Connors, JBR Matthews, Y Chen, X Zhou, MI Gomis, E Lonnoy, T Maycock, M Tignor, T Waterfield). (IPCC)

3. Australian Government Department of Industry, Science, Energy and Resources (2021) Quarterly update of Australia’s national greenhouse gas inventory: December 2021. Available at [verified 15 August 2022]

4. A universal equation to predict methane production of forage-fed cattle in Australia.;Animal Production Science,2016

5. Whole-farm systems analysis of Australian dairy farm greenhouse gas emissions.;Animal Production Science,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3