Abstract
Daytime stem shrinking is a well recorded phenomenon: trees dip into their internal water stores to meet imbalances between water supply and demand. Uncertainty surrounds the mechanisms behind the unusual pattern of daytime stem swelling, presented by species like the mangrove Avicennia marina (Forssk.) Vierh., and which is thought to originate in the osmotic adjustment of storage tissues. We performed on-xylem radius change (XRC) and whole-stem radius change (SRC) measurements with point dendrometers to ascertain if the swelling of the stem is due to an increase in the thickness of the phloem and inner-bark (BRC). We measured leaf water potential (ψleaf), sap flow, leaf turgor and microclimate to understand the coupling between BRC and transpiration-driven changes in XRC. Our results present direct evidence of the type of mechanism responsible for daytime stem swelling. Inner-bark thickness increase concurrent with XRC decrease, sap-flow increase and leaf turgor loss, reveals a phloem-generated turgor signal behind daytime stem swelling of tree stems. On-xylem measurements were highly heterogeneous due to the variability in the three dimensional fish-net wood structure of the stem of A. marina. As daytime decreases in XRC were compensated by BRC and correlated with conditions of high water demand, we suggest a potential role of daytime stem swelling in the hydraulic safety of A. marina.
Subject
Plant Science,Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献