Sorption of selected radionuclides on different MnO2 phases

Author:

Athon Matthew T.,Fryxell Glen E.,Chuang Chia-Ying,Santschi Peter H.

Abstract

Environmental contextReleases to the aquatic environment from radiological dispersal devices, accidents or leaking waste disposal sites require close monitoring for radionuclide identification. A novel in situ gamma spectrometer deployable on platforms in coastal waters can provide detailed radioisotopic, however, only after the radionuclides are pre-concentrated on efficient sorbents. Here, we report results of particle–water distribution coefficients, KD, on three novel MnO2 sorbents using a set of artificial and natural radionuclides in small batch experiments. AbstractAfter nuclear disasters, there is a need to monitor released radionuclides in aquatic systems. A novel in situ gamma spectrometer deployable on mobile and stationary platforms can detect individual radionuclides, provided concentrations are high enough. Owing to rapid dilution effects, efficient sorbents are needed for preconcentration of radionuclides. Here, we report results of particle–water distribution coefficients, KD, on three novel MnO2 sorbents mounted in high-capacity cartridges using a set of artificial (57Co, 106Ru, 125Sb, 133Ba, 137Cs) and natural (7Be, 210Pb, 233Pa, 234Th) radionuclides in small batch experiments. Compared with conventionally impregnated MnO2 sorbents, novel nanostructured MnO2 sorbents displayed superior sorption for some artificial radionuclides, displaying up to one order of magnitude greater KD values than traditionally impregnated MnO2. In particular, the log KD value of 210Pb was highest (4.48±0.23) compared with all values using the other MnO2 sorbents, whereas that of 233Pa was among the lowest (3.24±0.16). These results promise some improvements for capturing not only artificially produced radionuclides, but also naturally produced 7Be from seawater using nanostructured MnO2. We also show that colloidal forms of selected radionuclides are not captured by MnO2 phases. If they could be sorbed by another sorbent, KD values could be considerably higher for Th, Po and other radionuclides. Finally, our results might add further complexities to the discussion of the potential of Th/Pa fractionation by MnO2 phases in seawater.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3