Waterlogging and soil reduction affect the amount and apparent molecular weight distribution of dissolved organic matter in wetland soil: a laboratory study

Author:

Rouwane Asmaa,Grybos Malgorzata,Bourven Isabelle,Rabiet Marion,Guibaud Gilles

Abstract

The release of dissolved organic matter (DOM) from wetland soils is an important pathway for the input of organic compounds into adjacent aquatic environments. In the present study we investigated, under controlled laboratory conditions, the quantity and quality of DOM released from a wetland soil subject to waterlogging and reducing conditions. Three soil redox conditions (oxic, moderately reducing and advanced reducing) were distinguished based on nitrate, ferrous ions and sulfate concentrations in soil solution. Under each redox condition, the quantity (dissolved organic carbon (DOC), humic substances and peptides plus proteins (P-PN) and quality (aromaticity; specific ultraviolet absorbance at 254 nm (SUVA254nm)) and apparent molecular weight (aMW) distribution) of DOM were investigated. The results showed that soil redox condition affects the amount and properties of mobilised DOM. The rate of DOM release and SUVA254 values were highest during the transition from oxic to moderately reducing conditions, whereas both stabilised during progression to advanced reducing conditions. In addition, the mobilised DOM is expected to be more reactive because of an increase in polar substituents in aromatic structures between oxic and moderately reducing conditions. During the development of moderately reducing conditions, dissolved humic substances increased significantly, whereas their aMW distribution (between 500 and 6000 ) remained constant for each of the three different redox conditions. In contrast, the quantity of dissolved P-PN remained low and steady under the three redox conditions, whereas the aMW distribution of protein-like and microbial by-product-like compounds decreased during the development of reducing conditions (aMW of compounds between 100 and >100 000).

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3