Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley

Author:

Alqudah Ahmad M.,Schnurbusch Thorsten

Abstract

In small-grain cereals, grain yield is closely associated with grain number. Improved spikelet survival is an important trait for increasing grain yield. We investigated spikelet number, spikelet survival and yield-related traits under greenhouse conditions, and pot- and soil-grown field conditions. Thirty-two spring barley (Hordeum vulgare L.) accessions (14 two- and 18 six-rowed accessions) were manually dissected to determine spikelet/floret number on the main culm spike (SNS) at awn primordium (AP), tipping (TIP), heading and anther extrusion. We observed a significant difference between two- and six-rowed barley for SNS and spikelet survival at all stages and growing conditions. Both traits were highly genetically controlled, with repeatability and broad-sense heritability values of 0.74–0.93. The rate of spikelet survival from AP to harvest was higher in two- (~70%) than in six-rowed (~58%) barley. Spikelet abortion, starting immediately after AP, was negatively affected by increased SNS and the thermal time required to reach the AP stage. The largest proportion of spikelet reduction happened during the AP–TIP phase, which was the most critical period for spikelet survival. The duration between AP and the end of stem elongation correlated better with spikelet survival and yield-related characters than the estimated duration of stem elongation using leaf height measurements. Our observations indicate that the main spike plays an important role in single-plant grain yield. Extending the length of the critical AP–TIP phase is promising for improving yield through increased spikelet development and survival. The results also demonstrate that greenhouse conditions are appropriate for studying traits such as phase duration and spikelet survival in barley.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3